Sπ**RIT-TPC** experiments at **RIKEN** 2016

Mizuki Kurata-Nishimura For SπRIT-TPC collaboration

RIKEN, Nishina Center

Contents

- Physics Motivation
- Experimental Setup
 - RIBF-BigRIPS beam
 - SπRIT-TPC
 - First experiment at RIKEN-RIBF-SAMURAI

 $(^{132}\text{Sn} + ^{124}\text{Sn}),(^{108}\text{Sn} + ^{112}\text{Sn}),(^{124}\text{Sn} + ^{112}\text{Sn}),(^{112}\text{Sn} + ^{124}\text{Sn}) \sim 300 \text{MeV/u}$

- ✤ Results
 - Event display
 - ✤ Tracking
 - ✤ TPC-PID
- Ancillary detectors
 - Central trigger selection
 - TPC performance check
- Preliminary result
- Summary & Perspectives

Physics motivation

- We constrain symmetry energy term in EOS at Suprasaturation density.
- Heavy nuclear collision with 300 MeV/u beam is expected to reach to nuclear density of two times larger than the normal nuclear density.
- Symmetry energy can be studied using radioactive beams

π⁻/π⁺ Production Ratio

FIG. 2 (color online). The π^-/π^+ ratio as a function of the neutron/proton ratio of the reaction system at 0.4A GeV with the reduced impact parameter of $b/b_{\text{max}} \leq 0.15$. The inset is the impact parameter dependence of the π^-/π^+ ratio for the 96 Ru + 96 Ru reaction at 0.4A GeV.

FOPI data show π'/π⁺ ratio is larger than (N/Z)² ratio.
MDI used in the IBUU04 indicates the soft EOS is preferable.

SpiRIT experiment can directly compare with common Z and different N systems.

Directed and elliptic flow

FIG. 2. The average transverse momentum per nucleon in the reaction plane for neutrons and protons as a function of reduced rapidity with the K_{sym} parameter of +61 MeV (upper window) and -69 MeV (lower window), respectively.

BigRIPS in RIBF-RIKEN

- Unstable Sn beams provided by RIBF-Big-RIPS-RIKEN.
 - ✓ ¹³²Sn, ¹²⁴Sn, ¹¹²Sn, ¹⁰⁸Sn
 - ✓ ~280 MeVu
- Interested beams were separated through BigRIPS and transferred to SAMURAI experimental area.

e-RI scattering with SCRIT

Beam & Target configurations

	Beam	Purity	Energy [MeV/u]	Purpose δ=(N-Z)/A	Periods
Xe	¹⁰⁸ Sn	49%	268.9	neutron deficient $\delta = 0.09$	Apr. 30 - May. 4 '16
Xe	¹¹² Sn	44%	270.2	reference $\delta = 0.15$	May. 4 - May. 6 '16
U	¹³² Sn	57%	268.9	neutron rich $\delta = 0.22$	May. 25 – May. 29 '16
U	¹²⁴ Sn	10%	270.2	reference $\delta = 0.15$	May 30 - Jun. 1 '16

2D & 3D Event Display

¹³²Sn+¹²⁴Sn E/A=300 MeV (May 2016) Central reactions Pion Spiral Gas event

Track Reconstruction

- Pulse Shape Analysis
- Helix tracking: 3D momentum
 - ✓ Track separation
 - ✓ Riemann fit: 2D
 - ✓ Helix fit: 3D
 - ✓ Clustering
 - ✓ Initialize GENFIT parameters
- GENFIT: precise fitting (Parameterization, extrapolation)
- □ RAVE(Reconstruction vertices)

Vertex Reconstruction

RIKEN

Particle Identification by TPC

PID by TPC (¹³²Sn + ¹²⁴Sn @E/A=280MeV)

Active Collimator (no hit)									
Detector	Locatio n	trigger	Purpose						
SBT: Start Counters	After STQ mag.	Hitting	Count number of beam and determine start timing	Beam Drift					
Active Collimator	In front of the target	No hit	Reject beam passing through outside of the target.	Chamber(BDC) KATANA_V <= Z(20)					
KATANA- Veto	After the exit window	Pulse Height <= -30mV	Reject beam-like residues with Z greater than 20 passing through the TPC	Kyojo Multiplicity Arroy (Aultiplicity=4)					
Kyoto Multiplicity Array	Left and Right side	Multiplic ity >= 4	Trigger central collision events	NeuLAND : Neutron detection					
BDC: Beam Drift Chamber	In beam line after S.C.	not included	Reconstruct a beam track						
NeuLAND	8.5m, 30deg	not included	Detect neutron and charged light						
			particles	Transport 2017					

Centrality Trigger by charge of beam fragment with KATANA_V

If beam like heavy fragment hits KATANA_V, veto trigger is generated.

Tracking Efficiency

Tracking efficiency can be estimated from the trigger arrays, KTANA and Kyoto Multiplicity Array.

□ More than 80 % efficiency.

Correlation between Extrapolated track from TPC and Beam at the target.

Nice correlation indicates the successful operation of DAQ synchronization and vertex reconstruction Intrinsic spatial resolution is estimated to be ~ 1mm.

Sub-event analysis indicates an evidence of directed flow.

Azimuthal distribution of π⁺⁻, n, p, d, t, ³He, ⁴He, w.r.t. the reaction plane can be studied.

Acceptance

	thr.		Theta [deg]
pi+	30 ~	MeV/c	0 ~ 80
proton	100 ~	MeV/c	0 ~ 55
neutron	1 ? ~	MeV	22 ~ 43

Summary

- □ The first experiments were performed from April to June in 2016.
- For $(^{132}Sn+^{124}Sn)$, $(^{108}Sn+^{112}Sn)$ reaction, ~10M triggers accumulated.
- \square π^- , π^+ , p, d, t, He were identified.
- Correlation between TPC and ancillary detectors confirmed that
 - ✓ Typical space resolution is ~ 1mm
 - ✓ Tracking efficiency is more than 80%
- Development of tracking reconstruction code has been on progressing
- □ The evidence of flow was observed.

Perspectives

- ✓ π^+/π^- ratio comparison among neutron rich and poor configurations.
- ✓ Evaluate v1 and v2 for π^+ , π^- n, p, d, t, ³He , ⁴He.
- ✓ π^+/π^- , p/n ratio with respect to the reaction plane

Thank you for your attention

Other Participants: H. Baba, Chica, Ichihara, Kondo, T. Nakamura, H. Otsu, Saito, Togano NeuLAND Collaboration: Leyla Atar, Tom Aumann, Igor Gasparic, A. Horvat, H. Scheit

On Site Experimenters J. Barney (MSU) G. Cerizza (MSU) J. Estee (MSU) B. Hong (Korea U) T. Isobe (RIKEN)* G. Jhang (Korea U) M. Kaneko (Kyoto U) M. Kurata-Nishimura (RIKEN) P. Lasko (IFN, Krakow) H. Lee (RISP) J. Lee (Korea U) J. Lukasik (IFN, Krakow) W. Lynch (MSU)* A. McIntosh (TAMU) P. Morfouace (MSU) T. Murakami (Kyoto U)* S. Nishimura (RIKEN) P. Pawlowski (IFN, Krakow) C. Santamaria (MSU) R. Shane (MSU) D. Suzuki (RIKEN) B. Tsang (MSU)* Y. Zhang (Tsinghua U) *spokespersons

